

Mashery OAuth 2.0 Implementation Guide

June 2012
Revised: 7/18/12

www.mashery.com

Mashery, Inc.
717 Market Street, Suite 300
San Francisco, CA 94103

Mashery OAuth 2.0 Implementation Guide iii

Contents

C hapter 1. About this Guide ..5

Introduction ... 5
Assumptions .. 5
Chapter Overview .. 5
Conventions ... 6

C hapter 2. Overview ...7

Benefits of Using the Accelerator .. 8
Implementation Process Checklist ... 9
Things You Should Know .. 10

C hapter 3. The OAuth 2.0 Configuration Interface 11

C hapter 4. The Mashery OAuth 2.0 API .. 15

C hapter 5. Supported Grants and Flows .. 17

Authorization Flow ... 17
Implicit Grant Flow ... 18
Resource Owner Password Credentials Flow ... 19
Client Credentials Flow ... 19

Contents

iv Mashery OAuth 2.0 Implementation Guide

(This page provided to allow for duplex printing)

Mashery OAuth 2.0 Implementation Guide 5

Chapter 1.
About this Guide

Introduc tion
This guide describes how to use the Mashery OAuth 2.0 Accelerator to integrate OAuth 2.0
capabilities into your API. The OAuth 2.0 authorization protocol enables an application to
obtain access to your HTTP service without divulging user secrets such as username and
password.

A s s umptions
This guide assumes that you:

 Have registered and singed in at http://support.mashery.com and requested Mashery
API Keys

 Can to setup the various pages needed to integrate OAuth 2.0, for example, an
authentication endpoint and page to authenticate the resource owner and obtain
authorization

 Are thoroughly familiar with the concepts contained in the OAuth 2.0 specification

C hapter Overview
The Mashery Configuration Guide is divided into the following chapters:

 Chapter 2.Overview. Describes the structure and benefits of the Mashery OAuth 2.0
Accelerator.

 Chapter 3. The OAuth 2.0 Portal User Interface. Describes how to configure OAuth 2.0
using the associated portal settings.

 Chapter 4. The Mashery OAuth 2.0 API. Describes the resources of the Mashery OAuth
2.0 API.

 Chapter 5. Supported Grants and Flows. Describes the supported OAuth 2.0 grants and
flows.

http://tools.ietf.org/html/draft-ietf-oauth-v2-20�

Conventions

6 Mashery OAuth 2.0 Implementation Guide

C onventions
This guide uses the following conventions:

 Keys you press simultaneously appear with a plus (+) sign between them (for example,
Ctrl+P means press the Ctrl key first, and while holding it down, press the P key).

 Field, list, folder, window, and dialog box names have initial caps (for example, City,
State).

 Tab names are bold and have initial caps (for example, People tab).

 Names of buttons and keys that you press on your keyboard are in bold and have initial
caps (for example, Cancel, OK, Enter, Y).

Mashery OAuth 2.0 Implementation Guide 7

Chapter 2.
Overview

The Mashery OAuth2 Accelerator consists of an oauth2 configuration user interface and an
API which are described in detail later in this manual:

The OAuth2 Accelerator acts as an integrated component of your Authorization and
Resource servers. Capabilities provided include:

 Authorization Server: Authorization Code, Access Token and Refresh Token
issuance, persistence and management

 Resource Server: Verification of access tokens, access control to resources (endpoints)

 Rate Limiting: End users (access tokens) rate limiting

Benefits of Using the Accelerator

8 Mashery OAuth 2.0 Implementation Guide

Note: The Mashery OAuth 2.0 Accelerator components shown in the figure above
represent the functionality provided and are not deployed within your Resource
Server and the Authorization Server; and are not in and of themselves the Resource
Server and Authorization Server.

B enefits of Us ing the A c c elerator
Using the Mashery OAuth 2.0 Accelerator to roll out OAuth2 protected services translates
into reduced development and faster deployment:

Item Without Accelerator With Accelerator
Data management services
necessary to issue and
manage authorization codes
and tokens

 Must build yourself Included!

Rate limit end users using
access tokens Must build yourself Included!
Reporting and analytics on
resource access Must build yourself Included!
Access token verification

 Must build yourself Included!

Implementation Process Checklist

Mashery OAuth 2.0 Implementation Guide 9

Implementation P roc es s C hec klis t
Use the implementation Process checklist below to ensure that you and Mashery are working
effectively together to implement OAuth 2.0:

Done Mashery
 Enable OAuth2 Accelerator. You will know it is on if you see the OAuth 2.0 tab

within the API Settings screens, for example, as shown in the OAuth 2.0 tab
screenshot later in this guide.

 Ask customer contact(s) to register/sign-in at http://support.mashery.com and
request API keys for Mashery API (Production and Sandbox).

 Grant customer account access to OAuth2.0 API documentation
 Provide customer with link to oauth2 API docs and example API calls.
 Approve Mashery API Keys. Raise Throttle and Quota limit for Keys as needed,

especially for Production key.
 Add a redirect_uri field for the application if customer will be using a grant type that

requires redirection url check.
 Assist with setup of resource endpoints using correct authentication type.

Done You
 Register/Sign-in at http://support.mashery.com and request Mashery API Keys.
 Review OAuth2 API docs and example calls.
 Enable OAuth2 grant types that you will use for the API through the OAuth2 settings

tab. See the OAuth 2.0 specification and Chapter 5. Supported Grants and Flows for
a description of the various flows. This is a key consideration on the type of
developer community you are approaching.
OAuth 2.0 allows for some less secure usage patterns that may not be optimal for
you.

 Setup authorization endpoint and page to authenticate resource owner and obtain
authorization. You will need a user authentication and approval service exposed to
which your partners will send your shared users. In designing this piece, bear in
mind where you will host it. Make sure your API is designed where all protected
resources fall into the same request path or are easily configured separately as
endpoints within an API service.

 Create a token endpoint in the oauth2 protected API service. Refer to Chapter 4. The
OAuth 2.0 Configuration User Interface

 Setup “Account” page that allows resource owner to view authorized applications
and revoke access (if this functionality is desired).

 Develop integration with Mashery OAuth2 API.
 Handle redirection url check (if applicable).
 Setup backend code to expect user context in X-Mashery-Oauth-User-Context HTTP

Header and respond appropriately. This header will have the userid for which the
resource is being requested

http://tools.ietf.org/html/draft-ietf-oauth-v2-20�

Things You Should Know

10 Mashery OAuth 2.0 Implementation Guide

 Setup backend code to handle scope (if this functionality is desired).
 Consider whether you want to store access tokens:

 Pro: having access tokens provides some flexibility to: validate the tokens again
in the API tier, or validate calls you receive directly or remove Mashery from your
API at a later time (If you don't have the access tokens and you wish to re-route
traffic directly, you will have work involved)

 Con: extra development work and maintenance cost - you will own the /token
API calls on Authorization Code and Client Credentials flows

 Consider how your developers will test with OAuth. Do they need test accounts with
protected resources? Will you have staging environment to help their build cycles?

 Configure I/O Docs for sample calls.

T hings Y ou S hould K now
 Redirection URL Check –Mashery does not perform any check against the supplied

redirect_uri. However, the field is exposed on the application registration form to collect
this. Service provider Authorization server must perform the check by comparing the
client supplied value and value returned in the fetchApplication API call.

 Mashery does not perform any scope checking – The scope provided by the
service provider during authz code and access token creation is stored and passed on to
the service provider in the X-Mashery-Oauth-Scope HTTP Header. The provider may
use this information for access control rules in their tier.

 Foreign codes and tokens – Foreign authorization codes, access or refresh tokens
cannot be imported into Mashery. Mashery must always generate these.

 Data associated with existing access tokens cannot be updated – Scope or user
context cannot be subsequently altered.

 Client credentials are per API – If there are multiple oauth2 protected APIs,
authorization codes, tokens, etc. must be generated for each service and the correct
token used for resources in the corresponding service.

Mashery OAuth 2.0 Implementation Guide 11

Chapter 3.
The OAuth 2.0 Configuration Interface

This chapter describes how to access the OAuth settings on the portal and describe them
briefly. These settings assume that you are very familiar with the OAuth 2.0 specification.

To access the OAuth settings, click the OAuth 2.0 tab as shown below:

The following table describes the OAuth 2.0 portal settings:

Setting Description
Enable OAuth 2.0 Turns OAuth 2.0 support on or off.
OAuth 2.0 Grant Type See the OAuth 2.0 specification for a discussion of the

grant types.
Endpoint and Grant Type
Selection

See the OAuth 2.0 specification for a discussion of
endpoints and grant types.

Token Based Rate Limits Mashery offers two methods:
 By Developer Partner Key: So all API calls are

counted identically against a partner's limit. Token
based limits naturally drives more capacity to those
partners where you have more end user overlap

http://tools.ietf.org/html/draft-ietf-oauth-v2-20�
http://tools.ietf.org/html/draft-ietf-oauth-v2-20�
http://tools.ietf.org/html/draft-ietf-oauth-v2-20�

Things You Should Know

12 Mashery OAuth 2.0 Implementation Guide

Setting Description
 Limits on protected resource by user. This

affords more capacity preference to your partners
that have users with accounts to your business
since users have their own limits. Popular example
of this is Twitter API

Access Token Enable TTL: (TTL means Time to Live) You may
configure access tokens to expire, forcing a user to re-
authorize. Click the checkbox and then enter a TTL
value in the Token TTL field.
Enable Refresh Token: OAuth allows for token
refreshes. Refresh in situations where you trust the
partner, but want to ensure that access token leakage
has a risk lifespan that is short.
Decide what kind of end user experience you wish to
offer against the security requirements you have:
 Short TTL with no refreshes: Security is

highest, but user experience may be painful
 Short TTL with refreshes: Security is high,

partner is trusted
 Long TTL with no refreshes: End user

experience is important with decent security but
some implicit trust of partners. Not ideal for high
sensitive data.

 Long TTL with refreshes: End user effort is
least and security is lowest

Enable Secure Token: When enabled, Mashery
stores tokens using a one-way SHA-256 hashed value.
When secure tokens are enabled, then all requests
relying on legacy plain tokens will fail. At this point,
you must either create new tokens for these requests,
or disable secure tokens to re-enable the legacy plain
tokens.
Let Mashery handle access token requests:
When enabled, a token endpoint can be setup to handle
access token issuance directly for authorization code
and client credentials flows as well as exchange refresh
token for new access token

Token Type: Bearer vs. MAC
 Bearer is for low security data and easiest for

developers to understand and adopt
 MAC is for best security, but presents some small

complexity to developers. Your support costs will
be somewhat higher supporting partners to debug
why token errors are occurring

Headers Mashery provides a number of header variables you
may optionally insert. You may choose to enable or

Things You Should Know

Mashery OAuth 2.0 Implementation Guide 13

Setting Description
disable these. They are helpful for driving behavior
within your API
 Client ID (X-Mashery-Oauth-Client-Id): This

header has the value of the client identifier, a
unique string representing the registration
information provided by the client. The client must
be authorized access to the protected resources.

 User Context (X-Mashery-Oauth-User-
Context): Mashery stores any user-context data it
receives. Typically this is a user ID that exists
within your system and drives what data you return
in your call response. Some clients will use access
tokens saved within their system for this purpose.

 Access Token (X-Mashery-Oauth-Access-
Token): This header contains the value of the
access token issued in response to a successful
authorization request. The access token is bound to
a client identifier and is presented by the client to
the resource server when accessing protected
resources.

 Scope (X-Mashery-Oauth-Scope): Mashery
stores any scope data it receives and can insert it
into headers for your use.

Miscellaneous
Force SSL Redirection URL

The OAuth 2.0 spec calls for the developer to provide a
redirection URL for returning the user back to the
calling application. This URL is optionally configured
as SSL. The downside of not having this URL under
SSL is that potential authorization credentials may be
intercepted and used to gain access to user resources.
This is a man in the middle attack. Forcing SSL
provides some level of protection from this threat and
Mashery suggests that you implement this optional
feature.

Authorization Code TTL 1-5 minutes is a good value to target for how long an
Authorization Code will last. Typically, the time
between the user granting access rights and time when
the application with exchange the authorization code in
for an access token should be measured in seconds, not
minutes. The shorter this value is, the more
sophisticated any type of attack would need to be, but
also the more risk that a user must re-authenticate.

Things You Should Know

14 Mashery OAuth 2.0 Implementation Guide

(This page provided to allow for duplex printing)

Mashery OAuth 2.0 Implementation Guide 15

Chapter 4.
The Mashery OAuth 2.0 API

The complete technical documentation for the Mashery OAuth 2.0 API is available online at
http://support.mashery.com/docs/read/mashery_api/20/OAuth_Supporting_Methods. To
see this documentation, request the access by contacting your client services contact.

The following table describes the API at a high level:

API Method Purpose
fetchApplication Used during the Authorization step when the service provider’s

authorization server presents the resource owner with
information about the client requesting access to the resource
owner’s data. The API calls is used to verify if the client is valid
and fetches the client application data (name, attributes,
redirection url) which will be used to provide information to the
end user.

createAuthorizationCode
(Authz Code grant type
only)

After the resource owner has successfully authenticated against
the service provider’s authorization server and authorized the
client, the authz server will make this API call to Mashery to
generate the authz code which can be subsequently used to
obtain an access token. As a part of this API call, the service
provider will also supply the user-context (userid) for the
authenticated user. The service provider returns the authz code
to the client using the redirection url

createAccessToken API call used to generate the access token.
 For the authz code grant type, a valid authz code must be

presented
 For implicit and resource owner grant types, this occurs after

the resource owner has been authenticated (user-context
should be supplied). Service provider initiates the API call

 For Client Credentials flow, only the client credentials are
verified

 When exchanging a refresh token, a valid refresh token must
be presented

Note: Both client id and secret must be presented when
requesting an access token except in the case of Implicit grant
type

http://support.mashery.com/docs/read/mashery_api/20/OAuth_Supporting_Methods�

Things You Should Know

16 Mashery OAuth 2.0 Implementation Guide

API Method Purpose
fetchAccessToken May be used by the service provider to validate access tokens and

may be used as an additional layer of security or when certain
API calls are sent directly to the provider instead of through
Mashery

fetchUserApplications Used by the service provider to present the resource owner with
the client applications that been authorized by that resource
owner. This is typically used in the “Account” section of the
service provider’s site where the resource owner can view the list.

revokeAccessToken Used by the service provider to allow the resource owner to
revoke access to specific client applications that been authorized
by that resource owner. This is typically used in the “Account”
section of the service provider’s site where the resource owner
can view the list of authorized applications and select which
application should no longer be allowed access.

revokeUserApplication Revokes all tokens for an application for the specified user.

Mashery OAuth 2.0 Implementation Guide 17

Chapter 5.
Supported Grants and Flows

A uthorization F low

The Authorization Code grant type is optimized to support your untrusted clients. To
support this, you must setup an endpoint for the partner application to call to obtain end
user authorization per the OAuth 2.0 spec. The authorization server will then call Mashery’s
API, fetchApplication, to obtain application metadata - the information necessary to confirm
the redirect_uri and populate the login window.

The authorization server will serve the appropriate login window to the end user. Once the
end user is authenticated (authorizing the app to access it’s protected resources), the
authorization server will call Mashery’s API, createAuthorizationCode, providing a specific
user_context, scope and redirection url. Mashery will return an authorization code to the
authorization server, which will return the code to the client application via the redirection
url.

During setup, you may configure a TTL for the Authorization Code.

Implicit Grant Flow

18 Mashery OAuth 2.0 Implementation Guide

Once the client application has an authorization code, it may request an access token by
calling the token endpoint on the Mashery Traffic Manager directly. Mashery creates, stores,
and issues an access token to the client application. The response also includes a
refresh_token (if enabled), expiration period, token type, and scope. Alternatively, the
authorization server may host the token endpoint and call the Mashery API,
createAccessToken to obtain the access token that will then be returned to the client
application.

During setup, you may configure a TTL for the Access Token.

The client application may then call protected resources (ex: Profile) with the access token
issued by Mashery. Mashery will verify the access token and forward calls to the API with
the matching user_context and scope in the HTTP header.

Implic it G rant F low

The Implicit Grant type is optimized to support public clients (JavaScript clients). To
support this, you must setup an endpoint for the partner application to call to obtain end
user authorization per the OAuth 2.0 spec.

The authorization server will call Mashery’s fetchApplication and serve an appropriate login
window as described above. Once the end user is authenticated (authorizing the app to
access it’s protected resources), the authorization server will call Mashery’s API,
createAccessToken. Mashery will create, store, and respond with an access token and
expiration period. The authorization server will return this data to the client application via
the redirection url.

The client application is now empowered to call protected resources. Mashery will verify the
access token and forward calls to the API with the matching user_context and scope in the
HTTP header.

Resource Owner Password Credentials Flow

Mashery OAuth 2.0 Implementation Guide 19

R es ourc e Owner P as s word C redentials F low

The Resource Owner Password Credentials grant type is optimized to support trusted clients
that wish to access their own data or the data of an end user for which they have a trust
relationship. This grant type is suitable for clients capable of obtaining the resource owner's
credentials (username and password, typically using an interactive form). To support this,
you must setup an endpoint for the partner application to call to requests an access token
from the authorization server’s by including the end user credentials received. This flow does
not require Client to serve a login window. The client When making the request, the client

The authorization server will then call Mashery’s API, createAccessToken. Mashery will
create, store, and respond with an access token and expiration period, which will be returned
this data to the client application.

The client application is now empowered to call protected resources. Mashery will verify the
access token and forward calls to Client’s API with the matching user_context and scope in
the HTTP header.

C lient C redentials F low

The Client Credentials Flow grant type is optimized to support your developer partners that
wish to access information from that is not associated with a particular user account. In this
case, the Mashery client ID and shared secret replace the need for a username and password.
Since the client authentication is used as the authorization grant, no additional
authorization request is needed.

Client Credentials Flow

20 Mashery OAuth 2.0 Implementation Guide

The client application requests an access token by calling the token endpoint on the Mashery
Traffic Manager directly. Mashery will create, store, and respond to the client application
with an access token and expiration period. This flow does not require you to setup an
authorization endpoint or serve a login window.

The client application is now empowered to call protected resources. Mashery will verify the
access token and forward calls to the API.

	Chapter 1. About this Guide
	Introduction
	Assumptions
	Chapter Overview
	Conventions

	Chapter 2. Overview
	Benefits of Using the Accelerator
	Implementation Process Checklist
	Things You Should Know

	Chapter 3. The OAuth 2.0 Configuration Interface
	Chapter 4. The Mashery OAuth 2.0 API
	Chapter 5. Supported Grants and Flows
	Authorization Flow
	Implicit Grant Flow
	Resource Owner Password Credentials Flow
	Client Credentials Flow

